我想使用scikit-learn为每个特征子集执行嵌套网格搜索和交叉验证,以执行递归特征消除。来自 RFECV 文档听起来像使用这种类型的操作 estimator_params
参数:
estimator_params : dict
Parameters for the external estimator. Useful for doing grid searches.
但是,当我尝试将超参数网格传递给RFECV对象时
from sklearn.datasets import make_friedman1
from sklearn.feature_selection import RFECV
from sklearn.svm import SVR
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
estimator = SVR(kernel="linear")
selector = RFECV(estimator, step=1, cv=5, estimator_params={'C': [0.1, 10, 100, 1000]})
selector = selector.fit(X, y)
我得到一个错误
File "U:/My Documents/Code/ModelFeatures/bin/model_rcc_gene_features.py", line 130, in <module>
selector = selector.fit(X, y)
File "C:\Python27\lib\site-packages\sklearn\feature_selection\rfe.py", line 336, in fit
ranking_ = rfe.fit(X_train, y_train).ranking_
File "C:\Python27\lib\site-packages\sklearn\feature_selection\rfe.py", line 146, in fit
estimator.fit(X[:, features], y)
File "C:\Python27\lib\site-packages\sklearn\svm\base.py", line 178, in fit
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
File "C:\Python27\lib\site-packages\sklearn\svm\base.py", line 233, in _dense_fit
max_iter=self.max_iter, random_seed=random_seed)
File "libsvm.pyx", line 59, in sklearn.svm.libsvm.fit (sklearn\svm\libsvm.c:1628)
TypeError: a float is required
如果有人能告诉我我做错了什么,非常感谢,谢谢!
编辑:
在安德烈亚斯的回应变得更加清晰之后,下面是RFECV结合网格搜索的一个工作示例。
from sklearn.datasets import make_friedman1
from sklearn.feature_selection import RFECV
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVR
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
param_grid = [{'C': 0.01}, {'C': 0.1}, {'C': 1.0}, {'C': 10.0}, {'C': 100.0}, {'C': 1000.0}, {'C': 10000.0}]
estimator = SVR(kernel="linear")
selector = RFECV(estimator, step=1, cv=4)
clf = GridSearchCV(selector, {'estimator_params': param_grid}, cv=7)
clf.fit(X, y)
clf.best_estimator_.estimator_
clf.best_estimator_.grid_scores_
clf.best_estimator_.ranking_