我有一个小的N大T面板,我通过plm(面板线性回归模型)估算,具有固定的效果。
有没有办法获得新数据集的预测值? (我要 估计我的样本子集的参数,然后使用它们 计算整个样本的模型隐含值)。
谢谢!
我有一个小的N大T面板,我通过plm(面板线性回归模型)估算,具有固定的效果。
有没有办法获得新数据集的预测值? (我要 估计我的样本子集的参数,然后使用它们 计算整个样本的模型隐含值)。
谢谢!
包中有(至少)两种方法可以从plm对象生成估计值:
- fixef.plm:提取固定效果
- pmodel.response:提取model.response的函数
在我看来,作者对提供“随机效应”的估计不感兴趣。这可能是一个问题,“如果你不知道如何自己做,那么我们就不想给你一把锋利的刀来削减你自己。”
我写了一个叫做的函数 predict.out.plm
这可以创造预测 原版的 数据和 操纵 数据集(具有相同的列名)。
该 predict.out.plm
计算a)转换数据的预测(拟合)结果,b)根据水平结果构建。该函数适用于第一差分(FD)估计和固定效应(FE)估计 plm
。对于FD,它会随着时间的推移产生不同的结果,对于FE,它会产生时间贬值的结果。
该功能在很大程度上未经测试,可能仅适用于强平衡数据帧。
任何建议和更正都是非常受欢迎的。帮助开发一个小R包将非常感激。
功能 predict.out.plm
predict.out.plm<-function(
estimate,
formula,
data,
model="fd",
pname="y",
pindex=NULL,
levelconstr=T
){
# estimate=e.fe
# formula=f
# data=d
# model="within"
# pname="y"
# pindex=NULL
# levelconstr=T
#get index of panel data
if (is.null(pindex) && class(data)[1]=="pdata.frame") {
pindex<-names(attributes(data)$index)
} else {
pindex<-names(data)[1:2]
}
if (class(data)[1]!="pdata.frame") {
data<-pdata.frame(data)
}
#model frame
mf<-model.frame(formula,data=data)
#model matrix - transformed data
mn<-model.matrix(formula,mf,model)
#define variable names
y.t.hat<-paste0(pname,".t.hat")
y.l.hat<-paste0(pname,".l.hat")
y.l<-names(mf)[1]
#transformed data of explanatory variables
#exclude variables that were droped in estimation
n<-names(estimate$aliased[estimate$aliased==F])
i<-match(n,colnames(mn))
X<-mn[,i]
#predict transformed outcome with X * beta
# p<- X %*% coef(estimate)
p<-crossprod(t(X),coef(estimate))
colnames(p)<-y.t.hat
if (levelconstr==T){
#old dataset with original outcome
od<-data.frame(
attributes(mf)$index,
data.frame(mf)[,1]
)
rownames(od)<-rownames(mf) #preserve row names from model.frame
names(od)[3]<-y.l
#merge old dataset with prediciton
nd<-merge(
od,
p,
by="row.names",
all.x=T,
sort=F
)
nd$Row.names<-as.integer(nd$Row.names)
nd<-nd[order(nd$Row.names),]
#construct predicted level outcome for FD estiamtions
if (model=="fd"){
#first observation from real data
i<-which(is.na(nd[,y.t.hat]))
nd[i,y.l.hat]<-NA
nd[i,y.l.hat]<-nd[i,y.l]
#fill values over all years
ylist<-unique(nd[,pindex[2]])[-1]
ylist<-as.integer(as.character(ylist))
for (y in ylist){
nd[nd[,pindex[2]]==y,y.l.hat]<-
nd[nd[,pindex[2]]==(y-1),y.l.hat] +
nd[nd[,pindex[2]]==y,y.t.hat]
}
}
if (model=="within"){
#group means of outcome
gm<-aggregate(nd[, pname], list(nd[,pindex[1]]), mean)
gl<-aggregate(nd[, pname], list(nd[,pindex[1]]), length)
nd<-cbind(nd,groupmeans=rep(gm$x,gl$x))
#predicted values + group means
nd[,y.l.hat]<-nd[,y.t.hat] + nd[,"groupmeans"]
}
if (model!="fd" && model!="within") {
stop('funciton works only for FD and FE estimations')
}
}
#results
results<-p
if (levelconstr==T){
results<-list(results,nd)
names(results)<-c("p","df")
}
return(results)
}
测试功能:
##packages
library(plm)
##test dataframe
#data structure
N<-4
G<-2
M<-5
d<-data.frame(
id=rep(1:N,each=M),
year=rep(1:M,N)+2000,
gid=rep(1:G,each=M*2)
)
#explanatory variable
d[,"x"]=runif(N*M,0,1)
#outcome
d[,"y"] = 2 * d[,"x"] + runif(N*M,0,1)
#panel data frame
d<-pdata.frame(d,index=c("id","year"))
##new data frame for out of sample prediction
dn<-d
dn$x<-rnorm(nrow(dn),0,2)
##estimate
#formula
f<- pFormula(y ~ x + factor(year))
#fixed effects or first difffernce estimation
e<-plm(f,data=d,model="within",index=c("id","year"))
e<-plm(f,data=d,model="fd",index=c("id","year"))
summary(e)
##fitted values of estimation
#transformed outcome prediction
predict(e)
c(pmodel.response(e)-residuals(e))
predict.out.plm(e,f,d,"fd")$p
# "level" outcome prediciton
predict.out.plm(e,f,d,"fd")$df$y.l.hat
#both
predict.out.plm(e,f,d,"fd")
##out of sampel prediciton
predict(e,newdata=d)
predict(e,newdata=dn)
# Error in crossprod(beta, t(X)) : non-conformable arguments
# if plm omits variables specified in the formula (e.g. one year in factor(year))
# it tries to multiply two matrices with different length of columns than regressors
# the new funciton avoids this and therefore is able to do out of sample predicitons
predict.out.plm(e,f,dn,"fd")
看起来有一个新的软件包可以为包括plm在内的各种模型进行样本内预测
https://cran.r-project.org/web/packages/prediction/prediction.pdf