我想学习一些关于生锈任务的知识,所以我做了蒙特卡罗计算 PI。现在我的难题是单线程C版本快4倍的原因 比4路螺纹Rust版本。显然,我做错了什么,或者我的心理表现模型已经过时了。
这是C版本:
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#define PI 3.1415926535897932
double monte_carlo_pi(int nparts)
{
int i, in=0;
double x, y;
srand(getpid());
for (i=0; i<nparts; i++) {
x = (double)rand()/(double)RAND_MAX;
y = (double)rand()/(double)RAND_MAX;
if (x*x + y*y < 1.0) {
in++;
}
}
return in/(double)nparts * 4.0;
}
int main(int argc, char **argv)
{
int nparts;
double mc_pi;
nparts = atoi(argv[1]);
mc_pi = monte_carlo_pi(nparts);
printf("computed: %f error: %f\n", mc_pi, mc_pi - PI);
}
Rust版本不是逐行端口:
use std::rand;
use std::rand::distributions::{IndependentSample,Range};
fn monte_carlo_pi(nparts: uint ) -> uint {
let between = Range::new(0f64,1f64);
let mut rng = rand::task_rng();
let mut in_circle = 0u;
for _ in range(0u, nparts) {
let a = between.ind_sample(&mut rng);
let b = between.ind_sample(&mut rng);
if a*a + b*b <= 1.0 {
in_circle += 1;
}
}
in_circle
}
fn main() {
let (tx, rx) = channel();
let ntasks = 4u;
let nparts = 100000000u; /* I haven't learned how to parse cmnd line args yet!*/
for _ in range(0u, ntasks) {
let child_tx = tx.clone();
spawn(proc() {
child_tx.send(monte_carlo_pi(nparts/ntasks));
});
}
let result = rx.recv() + rx.recv() + rx.recv() + rx.recv();
println!("pi is {}", (result as f64)/(nparts as f64)*4.0);
}
构建和计算C版本:
$ clang -O2 mc-pi.c -o mc-pi-c; time ./mc-pi-c 100000000
computed: 3.141700 error: 0.000108
./mc-pi-c 100000000 1.68s user 0.00s system 99% cpu 1.683 total
构建和修改Rust版本:
$ rustc -v
rustc 0.12.0-nightly (740905042 2014-09-29 23:52:21 +0000)
$ rustc --opt-level 2 --debuginfo 0 mc-pi.rs -o mc-pi-rust; time ./mc-pi-rust
pi is 3.141327
./mc-pi-rust 2.40s user 24.56s system 352% cpu 7.654 tota