问题 计算变换球体的AABB


我有一个由对象空间中心点和半径表示的球体。球体被转换为世界空间,其变换矩阵可以包括尺度,旋转和平移。我需要在世界空间中为球体构建一个轴对齐的边界框,但我不知道该怎么做。

这是我目前的方法,适用于某些情况:

public void computeBoundingBox() {
    // center is the middle of the sphere
    // averagePosition is the middle of the AABB
    // getObjToWorldTransform() is a matrix from obj to world space
    getObjToWorldTransform().rightMultiply(center, averagePosition);

    Point3 onSphere = new Point3(center);
    onSphere.scaleAdd(radius, new Vector3(1, 1, 1));
    getObjToWorldTransform().rightMultiply(onSphere);

    // but how do you know that the transformed radius is uniform?
    double transformedRadius = onSphere.distance(averagePosition);

    // maxBound is the upper limit of the AABB
    maxBound.set(averagePosition);
    maxBound.scaleAdd(transformedRadius, new Vector3(1, 1, 1));

    // minBound is the lower limit of the AABB
    minBound.set(averagePosition);
    minBound.scaleAdd(transformedRadius, new Vector3(-1,-1,-1));
}

但是,我怀疑这总是有效的。它不应该因非均匀缩放而失败吗?


3288
2017-12-06 17:04


起源

这是哪种语言? (看起来像Java。) - BoltClock♦
看起来像C#,但它确实是一个与语言无关的问题 - bobobobo


答案:


通常,变换后的球体将是某种椭圆体。得到一个精确的边界框并不难;如果你不想通过所有数学:

  • 注意 M 是你的变换矩阵(比例,旋转,翻译等)
  • 阅读的定义 S 下面
  • 计算 R 正如最后所描述的那样
  • 计算 xy,和 z 基于的界限 R 如上所述。

一般圆锥(包括球体及其变换)可以表示为对称的4×4矩阵:均匀点 p 在圆锥内 S 什么时候 p^t S p < 0。通过矩阵M转换空间M转换S矩阵如下(下面的约定是点是列向量):

A unit-radius sphere about the origin is represented by:
S = [ 1  0  0  0 ]
    [ 0  1  0  0 ]
    [ 0  0  1  0 ]
    [ 0  0  0 -1 ]

point p is on the conic surface when:
0 = p^t S p
  = p^t M^t M^t^-1 S M^-1 M p
  = (M p)^t (M^-1^t S M^-1) (M p)

transformed point (M p) should preserve incidence
-> conic S transformed by matrix M is:  (M^-1^t S M^-1)

圆锥的对偶,适用于平面而不是点,由S的倒数表示;对于平面q(表示为行向量):

plane q is tangent to the conic when:
0 = q S^-1 q^t
  = q M^-1 M S^-1 M^t M^t^-1 q^t
  = (q M^-1) (M S^-1 M^t) (q M^-1)^t

transformed plane (q M^-1) should preserve incidence
-> dual conic transformed by matrix M is:  (M S^-1 M^t)

因此,您正在寻找与变换后的圆锥相切的轴对齐平面:

let (M S^-1 M^t) = R = [ r11 r12 r13 r14 ]  (note that R is symmetric: R=R^t)
                       [ r12 r22 r23 r24 ]
                       [ r13 r23 r33 r34 ]
                       [ r14 r24 r34 r44 ]

axis-aligned planes are:
  xy planes:  [ 0 0 1 -z ]
  xz planes:  [ 0 1 0 -y ]
  yz planes:  [ 1 0 0 -x ]

要找到与R相切的xy对齐平面:

  [0 0 1 -z] R [ 0 ] = r33 - 2 r34 z + r44 z^2 = 0
               [ 0 ]
               [ 1 ]
               [-z ]

  so, z = ( 2 r34 +/- sqrt(4 r34^2 - 4 r44 r33) ) / ( 2 r44 )
        = (r34 +/- sqrt(r34^2 - r44 r33) ) / r44

同样,对于xz对齐的平面:

      y = (r24 +/- sqrt(r24^2 - r44 r22) ) / r44

和yz对齐的平面:

      x = (r14 +/- sqrt(r14^2 - r44 r11) ) / r44

这为您提供了转换球体的精确边界框。


9
2017-12-06 19:03



注意 S 是一个渐开线矩阵,所以 S= S^-1 - Tavian Barnes


这不适用于非均匀缩放。用拉格朗日乘子(KKT定理)计算任意可逆仿射变换是可能的,我相信它会变得丑陋。

但是 - 你确定你需要一个确切的AABB吗?您可以通过变换球体的原始AABB并获得其AABB来近似它。它比确切的AABB大,所以它可能适合您的应用程序。

为此,我们需要有三个伪函数:

GetAABB(sphere) 将得到一个球体的AABB。

GetAABB(points-list) 将获得给定点集的AABB(仅对所有点的最小/最大坐标)。

GetAABBCorners(p, q) 将获得AABB的所有8个角点(p和q都在其中)。

(p, q) = GetAABB(sphere);
V = GetAABBCorners(p, q);
for i = 1 to 8 do
    V[i] = Transform(T, V[i]);
(p, q) = GetAABB(V);

1
2017-12-06 17:34



我不需要精确的AABB。但是,我不确定你的建议是什么。 (你能提供伪代码吗?)我应该从未转换的球体生成由两个点定义的原始AABB,然后转换这两个点,然后......? - Nick Heiner
当然。为此我们需要有三个伪函数:GetAABB(sphere)将得到一个球体的AABB。 GetAABB(点列表)将获得给定点集的AABB(仅对所有点的最小/最大坐标)。 GetAABBCorners(p,q)将获得AABB的所有8个角点(p和q都在其中)。 (p,q)= GetAABB(球体); V = GetAABBPoints(p,q);对于i = 1到8,V [i] =变换(T,V [i]); (p,q)= GetAABB(V); - Alex Shtof
好。我看到在评论中发布代码不起作用。我会编辑我的答案:) - Alex Shtof


@gorestorm的答案很棒,但可以简化很多。如果 M 是球体的变换矩阵,从1开始索引,然后是

x = M[1,4] +/- sqrt(M[1,1]^2 + M[1,2]^2 + M[1,3]^2)
y = M[2,4] +/- sqrt(M[2,1]^2 + M[2,2]^2 + M[2,3]^2)
z = M[3,4] +/- sqrt(M[3,1]^2 + M[3,2]^2 + M[3,3]^2)

(这假设球体在变换之前具有半径1并且其原点位于原点。)

我写了一篇带有证据的博客文章 这里,这对于合理的Stack Overflow答案来说太长了。


1
2018-06-09 02:17